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NOTICE: When government or other drawings, speci-
flcations or other dats are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Goveramen?t thervby incurs no responsibility, nor any
obligation whatscever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not o be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveylng any rights
or permission to manufacture, use or sell any
patented inventlion that may in any way be related
thereto,
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éu'BEST EXPT ORATION FOR MAXIMtTI IS FIBONACCIAI\TJ
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SUMMARY

A vnimodel Puncetion of one variable is defined on an
interval. WNo regularitly conditions involving continuity, deri-
vatives, ete., arc assum:d. We wish to minlmize the nuaber
of calculations of values of the Tunction 1n order to assure
the location of its maximum to o prescribed degrec of accuracy.
The solution of this problem and its discrete analogﬁe involves

the well-known Fibonaccl sequence,
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BEST EXPLORATION FOR MAXIMUM IS FIBONACCIAN

Selmer M. Johunson

When the author obtained the result presented here, he
thought 1t was new. fulsgequently, it was found that the result
had previously been published by J. Kiefer [1]. However, the
simplicity of Lhe present proof may Jjustify a short note on the
problem,

In some practicel problems the only way to locate a
maximum of a function is to observe the values of the function
at various points and vompare them. ¥For example, the funciion
may not be continuous, - perhups the derlvatives may be too
hard to fird analyticaily, etc. Wiih this in mind, and as a
first step toward the solution of the general problem, we

conclder the case of a unimodal functlon on an interval.

Definition: A function f{x) is unimodal if there is

an X, such that ¢ 1s ellther strictly lncreasing for x < x

and strictly decreasing for x > x

0]
or Or else strictly increasing

for x -° X, sgnd strictly incressing for x » x

a°
For exsmpie, concave functions are unimodwl .,
In (17, Kieter considzrs the problem nf delerminlng an

interval contalning the polnt ot vhich a unimodal function on

the unit interval poscesses & maximum. No regularity conditions
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concerning continuity or derivatives, etc., are assumed. He
gives, for every ¢ > 0 and ~very number n of values of the’
argument at which the function may be observgd, a procedure
whlch 18 ¢ -minimax among the class of all sequential non-
randomized procedures which terminate by giving an interval
containing the required point, where the payoff is the length
of the final interval. |

We present a short proof of the result after it has been

restated as follows.

; Theorem 1. Let‘y = f(x) be any‘unimodql fuhct;pn‘@efined
on an interval O “x= Lh' let ¥ = Qup of all Ln”with the
property that we can always locate the mwaximum of'f(x) on 8
‘unit-léngth subiutervai by ca:culutihg n yé]ues of,ﬁhe function,
‘Then F_  1s the n-th Fibouacel wumber; that is,

. Fn "Fn—l * Fn-2’ E n2 e,

with Fo = F, = 1.

The proof wi.l be by induction.

We observe first that FO = Fl = | follows from the ¢
definition of Fn’ gince Just one value of the fumctlon gives
no informalion concerning the location of ihe maximum.

Fix n » 2 and calculate y, = f(xl), Yo = f(xz), where
O<x, <x,<L . Ify >y, the maximm occurs on (o, x2)
since f(x) is strictly unimodal. IT Yp > ¥y the maximum is
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on (xl, Ln). If v, = yg, choose eithaf df the above intervals,
even though we know ihe maximum occurs on (xl’ x2). Thus ab
each stags after the first computaﬁion we are left with a sub-
interval and the value of f(x) at some interior point x. Since
values at the ends of aam interval 4o not always give usable
information relative to our problem, we restrict our attention
to the interior points. ”

= 1, for

Forns?,Lnﬂz-g, take x. = 1 - ¢, X

1
arbitrarily small e¢ > O. By the argument of the preceding

2

L T0°

¢ = + '
Fix n > 2, and assume that I'k ‘Fk—l Fk’-z‘for

paragraph, we have F,o=2=F + ¥

k=2, ..., n~1. We shall show that

, and x,, on 1, 1) we have the pitture

ir Yy > y2, ve have the nevw picture

1
0 xl x2
But then X, < Fn 1 since we have only n - 2 more cholces

with x, a first choice for the case k = n - 1, Moreover,




pr-856
5-l-56
ke

Xy < Fn-2’ since the maximum could occur on (0, xl) vith two
choices of x already used,
Similarly if y2 > yl, we have Ln - xl < Fn-l . Thus
< + < + F hat < .
Ln Fn-l X1 Fn-—l Pn-B’ s0 that Fn - Fn-l ¥ Fn-."

€Y /1w g
p - = + P
Now choose Ln + (1 2)(}'n_l ¥ _2), Xy + (1 E)Fn-2’

oand x, = (1 - %)F Since ¢ 18 arbitrarily small this shows

2’ n-1"

that Fn = F 50 Theorem 1 is proved. Moreover, iLhe

a1’ Fn—2’
procedure is optimal fur a given e, since atter comparing i(xl)
and f(XE) we are left with an interval of leﬁgth L1 =.(l - %)
Fn—l’ end with a valqe at optimal first position for this
‘Hanaller interval, Continuing in this way we have L, = (1 - %)Fk
for k < n; in particular, L, = {1 - %)F2 =2 - ¢, and thé tinal
%ntéfval is of unit 1enéth.

f The Fn form the‘sequénce 4

1,1, 2, 3,5, 8,13, 21, 3k, 55, .0, |
- with F2§ = 10000. . Thus a maximwa can always be located within
10-hyof the original interval length with 20 calculations. Using
the more conventional technique of computing T J«) and @ )v + ¢),
where x is at the midpoint of the interval, may take s&s many as
28 computations.
As Kiefer remarks, since F}ﬁj /Fn rapidly approaches its

limit o = %()ﬁ§+ 1) = 1. &, one could choose the first two

values of x at L/t = .68 L trom either end of the Interval. This

would be an excellent approximstion at each stage except for the
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last few choices, especially if n is not flxed in advance but
is determined after several values have been observed (e.g.,
more observations might be taken 1t the function appears to
be sharply pesked near its maximum). This constant ratic to
determine the next x would be useful in & computing-machine
code.

A line segment 1is saild to Be divided éccordihg‘to the
"golden section" if one part is T times the other. The
approximation suggested above gives at céch stage an laterval
which 1s vivided by the golden section at its x value but
Hﬁredpced in scale from the ﬁrevioua intcryal. This f9110ws

Vs
frém the relation

L / T‘ = l L
1 =
-3 1

The Discrete Case

Theorem 2. let y = f{x) be any unimodal function defincd

on a discrete set of‘Hn points. Let K = max H_ such that the

function's maximum can always be identified in n observations.

Then
Kn = -1 + Fnkl’ n>1,
Froof. Number the points 1, 2, 3, ..., Hn' Observe that
Kl - 1, Kg = 2, K:5 = 4, Fix n > 3 and ascume K, = -1+ Frel

for k ~ n. Calculate f(x) at %) 5

and x,. By arguments analogous

e &
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to those of Theorem 1, we must have

80 taat

< 4+ 1 + = (F - + 1 + - 1 = T ~ 1.
H K lKn__(P 1)1Fn1rmll

n - "n-2 1 n-1

This maximum is attained when x, = F ang x, = F . Thus
1 n-1 2 n

Theorem 2 is proved; moreover, the optimal construction is

given.
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